Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

*O,O'-Di-p-*tolylpyrophosphoric bis(dimethylamide)

Mehrdad Pourayoubi,^a Saied Ghadimi^{b*} and Ali Asghar Ebrahimi Valmoozi^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and ^bDepartment of Chemistry, Imam Hossein University, P.O. Box 16575-347, Tehran, Iran

Correspondence e-mail: ghadimi_saied@yahoo.com

Received 20 January 2010; accepted 21 January 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.124; data-to-parameter ratio = 19.2.

The title compound, $C_{18}H_{26}N_2O_5P_2$, was obtained accidently from the reaction between *N*,*N*-dimethylphosphoramidochloridic acid 4-methyl phenyl ester, NaNO₂ and 18-crown-6 in acetonitrile under reflux conditions. The asymmetric unit contains one half-molecule, the complete molecule being generated by crystallographic twofold symmetry, with the bridging O atom lying on the rotation axis. The P atoms exhibit a tetrahedral coordination and are bridged *via* one O atom [P–O–P angle = 130.00 (19)°].

Related literature

For related structures, see: Ghadimi et al. (2007, 2009); Pourayoubi et al. (2007).

Experimental

Crystal data

 $C_{18}H_{26}N_2O_5P_2$ $V = 2007.8 (7) Å^3$
 $M_r = 412.35$ Z = 4

 Monoclinic, C2/c Mo K α radiation

 a = 26.484 (5) Å $\mu = 0.25 \text{ mm}^{-1}$

 b = 7.4195 (15) Å T = 100 K

 c = 11.096 (2) Å $0.50 \times 0.25 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.930, T_{\rm max} = 0.978$

Refinement

 $R[F^{2} > 2\sigma(F^{2})] = 0.052$ $wR(F^{2}) = 0.124$ I S = 0.942415 reflections

6483 measured reflections 2415 independent reflections 1763 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$

126 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.34\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.37\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Support of this investigation by Imam Hossein University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2328).

References

- Bruker (2005). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghadimi, S., Pourayoubi, M. & Valmoozi, A. A. E. (2009). Z. Naturforsch. Teil B, 64, 565–569.
- Ghadimi, S., Valmoozi, A. A. E. & Pourayoubi, M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 339–340.
- Pourayoubi, M., Ghadimi, S. & Valmoozi, A. A. E. (2007). Acta Cryst. E63, 04093.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o450 [doi:10.1107/S1600536810002692]

O,*O*'-Di-*p*-tolylpyrophosphoric bis(dimethylamide)

M. Pourayoubi, S. Ghadimi and A. A. Ebrahimi Valmoozi

Comment

Following our previous works about amido phosphoric acid esters with general formula $[(CH_3)_2N][p-CH_3-C_6H_4-O]P(O)X$ [for example X = NHCH(CH_3)₂ (Pourayoubi *et al.*, 2007) and NHC(CH_3)₃ (Ghadimi *et al.*, 2009)], we report here on the synthesis and crystal structure of title compound, $[(CH_3)_2N][p-CH_3-C_6H_4-O]P(O)(O)P(O)[O-C_6H_4-p-CH_3][N(CH_3)_2]$. The asymmetric unit contains one half-molecule, the complete molecule (Fig. 1) being generated by a twofold rotation axis. The phosphorous atoms exhibit a tetrahedral coordination and are bridged *via* one O atom (P-O-P angle = 130.0 (2)°). The bond angles around the P atoms are in the range of 94.25 (12)° (for O1-P1-O2 angle) to 117.71 (12)° (for O3-P1-O1 angle). The nitrogen atom indicates some deviation from planarity, the sum of the surrounding angles around N atom being about 353.3°.

Experimental

 $[(CH_3)_2N]P(O)Cl[O-C_6H_4-p-CH_3]$ was synthesized according to the literature method (Ghadimi *et al.*, 2007). The title compound was prepared according to the following procedure: A mixture of $[(CH_3)_2N]P(O)Cl[O-C_6H_4-p-CH_3]$ (0.82 g, 3.5 mmol), NaNO₂ (0.24 g, 3.5 mmol) and 18-crown-6 (0.20 g) in acetonitrile (30 ml) was refluxed for 4 h and then filtered. The solvent was removed under vacuum and the solid recrystallized in a mixture of chloroform and n-hexane to produce single crystals after a slow evaporation at room temperature. IR (KBr, cm⁻¹): 2995, 2900, 2880, 2820, 1850, 1580, 1480, 1440, 1300, 1235, 1250, 1185, 1100, 990, 940, 730.

Refinement

The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Ci), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Figures

Fig. 1. Molecular view (50 % probability level) of the title compound. Symmetry code A: - x,y,-z+1/2.

O,O'-Di-p-tolylpyrophosphoric bis(dimethylamide)

Crystal data C₁₈H₂₆N₂O₅P₂

F(000) = 872

$M_r = 412.35$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 26.484 (5) Å
<i>b</i> = 7.4195 (15) Å
c = 11.096 (2) Å
$\beta = 112.949 \ (4)^{\circ}$
$V = 2007.8 (7) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	2415 independent reflections
Radiation source: fine-focus sealed tube	1763 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.039$
phi and ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -34 \rightarrow 21$
$T_{\min} = 0.930, \ T_{\max} = 0.978$	$k = -9 \rightarrow 9$
6483 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.124$	H-atom parameters constrained
<i>S</i> = 0.94	$w = 1/[\sigma^2(F_o^2) + (0.013P)^2 + 16.2989P]$ where $P = (F_o^2 + 2F_c^2)/3$
2415 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
126 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$

 $D_{\rm x} = 1.364 {\rm Mg m}^{-3}$

 $0.50\times0.25\times0.10~mm$

 $\theta = 2.9-30.7^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 100 KPlate, colorless

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1898 reflections

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.05951 (3)	0.15216 (10)	0.29554 (7)	0.01597 (17)
01	0.08997 (8)	-0.0313 (3)	0.2957 (2)	0.0188 (4)
O2	0.0000	0.0607 (4)	0.2500	0.0198 (6)
O3	0.07504 (8)	0.2488 (3)	0.4196 (2)	0.0224 (5)
N1	0.06400 (10)	0.2733 (3)	0.1781 (2)	0.0192 (5)
C1	0.14675 (11)	-0.0402 (4)	0.3240 (3)	0.0159 (6)
C2	0.18495 (13)	0.0402 (4)	0.4337 (3)	0.0237 (7)
H2A	0.1735	0.1112	0.4898	0.028*
C3	0.24040 (13)	0.0160 (4)	0.4612 (3)	0.0250 (7)
H3A	0.2669	0.0709	0.5369	0.030*
C4	0.25790 (12)	-0.0867 (4)	0.3802 (3)	0.0205 (6)
C5	0.21822 (12)	-0.1656 (4)	0.2707 (3)	0.0222 (6)
H5A	0.2294	-0.2372	0.2145	0.027*
C6	0.16261 (12)	-0.1427 (4)	0.2411 (3)	0.0205 (6)
H6A	0.1360	-0.1965	0.1652	0.025*
C7	0.31835 (12)	-0.1118 (5)	0.4103 (4)	0.0305 (8)
H7A	0.3238	-0.1263	0.3284	0.046*
H7B	0.3317	-0.2194	0.4647	0.046*
H7C	0.3387	-0.0059	0.4574	0.046*
C8	0.05658 (14)	0.4694 (4)	0.1789 (4)	0.0288 (7)
H8A	0.0723	0.5265	0.1217	0.043*
H8B	0.0751	0.5151	0.2683	0.043*
H8C	0.0174	0.4974	0.1472	0.043*
C9	0.04811 (13)	0.1948 (4)	0.0462 (3)	0.0239 (7)
H9A	0.0670	0.2590	-0.0013	0.036*
H9B	0.0084	0.2062	-0.0016	0.036*
H9C	0.0584	0.0672	0.0538	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0134 (3)	0.0175 (3)	0.0189 (4)	-0.0003 (3)	0.0084 (3)	-0.0005 (3)
01	0.0150 (10)	0.0186 (10)	0.0268 (11)	-0.0006 (8)	0.0127 (9)	-0.0007 (9)
O2	0.0159 (14)	0.0197 (15)	0.0274 (16)	0.000	0.0123 (13)	0.000
O3	0.0209 (11)	0.0254 (11)	0.0212 (11)	0.0015 (9)	0.0087 (9)	-0.0031 (9)
N1	0.0183 (12)	0.0189 (12)	0.0216 (13)	-0.0024 (10)	0.0090 (11)	0.0008 (10)
C1	0.0142 (13)	0.0140 (12)	0.0219 (15)	-0.0007 (11)	0.0097 (11)	0.0043 (11)
C2	0.0247 (16)	0.0254 (15)	0.0223 (16)	0.0021 (13)	0.0104 (13)	-0.0029 (13)
C3	0.0200 (15)	0.0249 (15)	0.0247 (17)	-0.0016 (13)	0.0029 (13)	-0.0023 (13)
C4	0.0177 (14)	0.0172 (13)	0.0276 (16)	0.0010 (11)	0.0098 (13)	0.0077 (12)
C5	0.0208 (15)	0.0224 (15)	0.0266 (16)	0.0028 (12)	0.0127 (13)	-0.0007 (13)
C6	0.0206 (14)	0.0200 (14)	0.0221 (15)	-0.0004 (12)	0.0096 (12)	-0.0033 (12)
C7	0.0168 (15)	0.0286 (17)	0.042 (2)	0.0034 (13)	0.0075 (14)	0.0097 (15)
C8	0.0291 (17)	0.0205 (15)	0.0381 (19)	-0.0004 (13)	0.0147 (15)	0.0045 (14)

supplementary materials

C9	0.0241 (15)	0.0279 (16)	0.0221 (16)	-0.0029 (13)	0.0115 (13)	0.0008 (13)
Geometric param	neters (Å, °)					
P103		1.462 (2)	C4—C5		1	.388 (4)
P1-01		1 582 (2)	C4—C7	,	1	514 (4)
P1		1.6059 (14)	C5—C6		1	.389 (4)
P1—N1		1.625 (3)	С5—Н5	δA	0	.9500
O1—C1		1.413 (3)	C6—H6	δA	0	.9500
$O2-P1^{i}$		1.6059 (14)	С7—Н7	ΥA	0	.9800
N1—C8		1.468 (4)	С7—Н7	'B	0	.9800
N1—C9		1.476 (4)	С7—Н7	'C	0	.9800
C1—C6		1.379 (4)	С8—Н8	BA	0	.9800
C1—C2		1.379 (4)	С8—Н8	BB	0	.9800
C2—C3		1.390 (4)	C8—H8	8C	0	.9800
C2—H2A		0.9500	С9—Н9	0A	0	.9800
C3—C4		1.389 (4)	С9—Н9	B	0	.9800
С3—НЗА		0.9500	С9—Н9	0C	0	.9800
O3—P1—O1		117.71 (12)	C4—C5	—H5A	1	19.1
O3—P1—O2		112.64 (10)	C6—C5	—H5A	1	19.1
O1—P1—O2		94.25 (12)	C1—C6	—C5	1	18.7 (3)
O3—P1—N1		113.71 (13)	C1—C6	H6A	1	20.6
O1—P1—N1		106.27 (12)	C5—C6	H6A	1	20.6
O2—P1—N1		110.55 (11)	C4—C7	—H7A	1	09.5
C1—O1—P1		122.57 (17)	C4—C7	—Н7В	1	09.5
P1—O2—P1 ⁱ		130.00 (19)	Н7А—0	С7—Н7В	1	09.5
C8—N1—C9		114.2 (3)	C4—C7	—Н7С	1	09.5
C8—N1—P1		119.4 (2)	H7A—0	С7—Н7С	1	09.5
C9—N1—P1		119.7 (2)	Н7В—С	С7—Н7С	1	09.5
C6—C1—C2		121.2 (3)	N1—C8	B—H8A	1	09.5
C6—C1—O1		116.9 (3)	N1—C8	3—H8B	1	09.5
C2-C1-O1		121.8 (3)	H8A—0	C8—H8B	1	09.5
C1—C2—C3		119.1 (3)	N1—C8	B—H8C	1	09.5
C1—C2—H2A		120.5	H8A—0	С8—Н8С	1	09.5
С3—С2—Н2А		120.5	H8B—0	C8—H8C	1	09.5
C4—C3—C2		121.3 (3)	N1—C9	—Н9А	1	09.5
C4—C3—H3A		119.4	N1—C9	—Н9В	1	09.5
С2—С3—НЗА		119.4	H9A—0	С9—Н9В	1	09.5
C5—C4—C3		117.9 (3)	N1—C9	—Н9С	1	09.5
C5—C4—C7		121.0 (3)	Н9А—С	С9—Н9С	1	09.5
C3—C4—C7		121.0 (3)	Н9В—С	С9—Н9С	1	09.5
C4—C5—C6		121.8 (3)				
O3—P1—O1—C	1	-64.5 (2)	P1—O1	C1C6	-	133.6 (2)
O2—P1—O1—C	1	177.1 (2)	P1—O1	C1C2	5	0.4 (3)
N1—P1—O1—C	1	64.3 (2)	C6—C1	—С2—С3	-	0.4 (5)
O3—P1—O2—P1	l ⁱ	66.93 (11)	01—C1		1	75.5 (3)
O1—P1—O2—P1	l ⁱ	-170.64 (9)	C1—C2	C3C4	0	.2 (5)
N1—P1—O2—P1	l ⁱ	-61.51 (10)	C2—C3		-	0.3 (5)

O3—P1—N1—C8	-28.6 (3)	C2—C3—C4—C7	179.7 (3)
O1—P1—N1—C8	-159.7 (2)	C3—C4—C5—C6	0.5 (5)
O2—P1—N1—C8	99.2 (2)	C7—C4—C5—C6	-179.4 (3)
O3—P1—N1—C9	-178.3 (2)	C2-C1-C6-C5	0.7 (4)
O1—P1—N1—C9	50.6 (2)	O1—C1—C6—C5	-175.4 (3)
O2—P1—N1—C9	-50.4 (3)	C4—C5—C6—C1	-0.7 (5)

Symmetry codes: (i) -x, y, -z+1/2.

Fig. 1

